Экология, проблемы и защита

Lifeunderwater.ru

Круговорот азота

Азот входит в состав биологически важных органических веществ всех живых организмов: белков, нуклеиновых кислот, липопротеидов, ферментов, хлорофилла и т.д. Несмотря на содержание азот (79 %) в составе воздуха, он является дефицитным для живых организмов.

Азот в биосфере находится в недоступной для организмов газообразной форме (N2) - химически мало активной, поэтому он не может непосредственно использоваться высшими растениями (и большинством низших растений) и животным миром. Растения усваивают азот из почвы в виде ионов аммония или нитратных ионов , т.е. так называемый фиксированный азот.

Различают атмосферную, промышленную и биологическую фиксации азота.

Атмосферная фиксация

происходит при ионизации атмосферы космическими лучами и при сильных электрических разрядах во время гроз, при этом из молекулярного азота воздуха образуются оксиды азота и аммиака, которые благодаря атмосферным осадкам превращаются в аммонийный , нитритный , нитратный азот и попадают в почву и водные бассейны.

Промышленная фиксация

происходит в результате хозяйственной деятельности человека. Атмосфера загрязняется соединениями азота заводами, производящими азотные соединения. Горячие выбросы ТЭЦ, заводов, космических аппаратов, сверхзвуковых самолетов окисляют азот воздуха. Оксиды азота, взаимодействуя с парами воды воздуха с осадками возвращаются на землю, попадают в почву в ионной форме.

Биологическая фиксация

играет основную роль в круговороте азота. Ее осуществляют почвенные бактерии:

) азотфиксирующие бактерии (и сине-зеленые водоросли);

) микроорганизмы, живущие в симбиозе с высшими растениями (клубеньковые бактерии);

) аммонифицирующие;

) нитрифицирующие;

) денитрифицирующие.

Свободно живущие в почве азотфиксирующие аэробные (

существующие в присутствии кислорода)

бактерии (Azotobacter) способны осуществлять фиксацию молекулярного азота атмосферы за счет энергии, получаемой при окислении органических веществ почвы в процессе дыхания, в конечном итоге связывая его с водородом и вводя в виде аминогруппы (-NH2) в состав аминокислот своего тела. Молекулярный азот способен фиксировать и некоторые анаэробные (живущие в отсутствие кислорода) бактерии, существующие в почве (Clostridium). Отмирая, и те и другие микроорганизмы обогащают почву органическим азотом.

К биологической фиксации молекулярного азота способны и сине-зеленые водоросли, особенно важные для почв рисовых полей.

Наиболее эффективно биологическая фиксация атмосферного азота протекает у бактерий, живущих в симбиозе в клубеньках бобовых растений (

клубеньковые бактерии).

Эти бактерии (Rizobium) используют энергию растения-хозяина для фиксации азота, в то же время снабжая наземные органы хозяина доступными ему соединениями азота. Усваивая соединения азота из почвы в нитратной и аммонийной формах, растения строят необходимые азотсодержащие соединения своего тела (нитратный азот в клетках растений предварительно восстанавливается). Растения-продуценты снабжают азотистыми веществами весь животный мир и человечество. Погибшие растения используются, согласно трофической цепи, биоредуцентами.

Аммонифицирующие микроорганизмы разлагают органические вещества, содержащие азот (аминокислоты, мочевину), с образованием аммиака. Часть органического азота в почве не минерализуется, а превращается в гумусовые вещества, битумы и компоненты осадочных пород.

Аммиак (в виде аммонийного иона) может поступить в корневую систему растений, или использоваться в процессах нитрификации.

Нитрифицирующие микроорганизмы являются хемосинтетиками, используют энергию окисления аммиака до нитратов и нитритов до нитратов для обеспечения всех процессов жизнедеятельности. За счет этой энергии нитрификаторы восстанавливают углекислый газ и строят органические вещества своего тела. Окисление аммиака при нитрификации протекает по реакциям:

NH₃ + 3O₂ → 2HNO₂ + 2H₂O + 600 кДж (148 ккал).

HNO₃ + O₂ → 2HNO₃ + 198 кДж (48 ккал).

Нитраты, образовавшиеся в процессах нитрификации, вновь поступают в биологический круговорот, поглощаются из почвы корнями растений или после поступления с водным стоком в водные бассейны- фитопланктоном и фитобентосом. Перейти на страницу: 1 2

Интересное по теме

Предельно допустимая концентрация вредных веществ Проблема охраны окружающей среды в конце XX столетия стала одной из острейших во всех государствах и достигла максимального пика в наиболее развитых странах, где прямое и косвенное ...

Экологические фонды задачи, принципы, особенности Важным элементом экономического механизма регулирования в области охраны окружающей среды являются экологические фонды, которые включают Федеральный экологический фонд Российской Ф ...

Организация системы мониторинга за климатическими изменениями в России и других странах Информация о состоянии окружающей природной среды, об изменениях этого состояния используется человеком давно. Последние сто с лишним лет наблюдения ведутся регулярно - достаточно ...

Озоносфера и ее значение в функционировании климатической системы Целью работы является описание озоносферы - важнейшей составной части атмосферы, влияющей на климат и защищающей все живое на Земле от жесткого ультрафиолетового излучения Солнца, ...